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The random-energy model is studied in the presence of random fields. The problem is solved exactly both in
the microcanonical ensemble, without recourse to the replica method, and in the canonical ensemble using the
replica formalism. The phase diagrams for bimodal and Gaussian random fields are investigated in detail. In
contrast to the Gaussian case, the bimodal random field may lead to a tricritical point and a first-order
transition. An interesting feature of the phase diagram is the possibility of a first-order transition from para-
magnetic to mixed phase.
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I. INTRODUCTION

Spin-glass �1,2� and random-field models �3� have played
prominent roles in the study of disordered systems in the last
few decades. Although the random-exchange and random-
field effects are are usually considered separately, it has been
argued that in proton glasses such as Rb1−x�NH4�xH2PO4 �4�
it is necessary to take into account the effect of random fields
generated by the presence of impurities. Another example
where the spin-glass and random-field effects are present si-
multaneously is the diluted antiferromagnets FexZn1−xF2

�5,6�.
The effect of random fields on the well known

Sherrington-Kirkpatrick �SK� model for spin glass �7� has
been investigated for Gaussian random fields �8�, bimodal
random fields �9�, and trimodal random fields �10�. These
studies, limited to the replica-symmetric solution, indicate
that the bimodal and trimodal random fields, but not the
Gaussian random fields, may induce first-order phase transi-
tions and tricritical points. Since the full replica-symmetry-
breaking solution of the SK model is rather difficult to work
out explicitly �1,2�, it seems worthwhile to consider a sim-
pler spin-glass model where the effect of random fields on
the phase diagram can be investigated thoroughly.

The random-energy model �REM� �11,12� is probably the
simplest spin-glass model �13� retaining some important
properties of the SK model. The REM is related to the gen-
eralization of the SK model to include interaction between
every set of p spins �13�. In the p→� limit the energies of
the spin configurations become independent random vari-
ables and the model reduces to the REM.

In this paper we investigate the effect of random fields on
the REM. The model is given as the p→� limit of the
Hamiltonian

H = − �
i1�¯�ip

Ji1. . .ip
Si1

¯ Sip
− J0�

i�j

SiSj − �
i

HiSi, �1�

where Si= ±1 are Ising spins, Ji1. . .ip
are independent

quenched Gaussian random couplings with zero mean and
variance p!J2 /2Np−1, J0�0 are ferromagnetic couplings, and
Hi are independent identically distributed quenched random
fields.

The Hamiltonian �1� for p=2 is the SK model in a random
field, whereas for p→� it reduces to the REM model in a
random field. We have solved the problem exactly by two
complementary approaches. In Sec. II we employ the micro-
canonical formalism �12� to obtain the thermodynamic quan-
tities directly. In Sec. III we employ the replica formalism
�13� to determine the spin-glass order parameters. In Sec. IV
we study the phase diagram for bimodal and Gaussian dis-
tribution of random fields. Finally, in Sec. V we compare our
results with the previous studies on related models and make
some concluding remarks.

II. MICROCANONICAL APPROACH

In this section we solve the model in the microcanonical
ensemble �12�. Let S= �S1 , . . . ,SN� denote one of 2N spin
configurations or the microstates of the system. The energy
of a given microstate is given by

ES = H�S� = − �
i1�¯�ip

Ji1¯ip
Si1

¯ Sip
+ H0�S� , �2�

where H0 denotes the part of the Hamiltonian without ran-
dom couplings. Since ES are linear combinations of Gaussian
random variables Ji1¯ip

, they are themselves Gaussian ran-
dom variables with mean

�ES� = H0�S� = ES
0, �3�

and covariance

�SS� = ��ES − ES
0��ES� − ES�

0 �� =
J2N

2
�qSS�

p + O	 1

N

� , �4�

where
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qSS� =
1

N
�

i

SiSi�, �5�

is the overlap between the microstates S and S�. In the ther-
modynamic limit, N→�, the energies ES and ES� of two
macroscopically distinguishable microstates S and S� be-
come uncorrelated in the p→� limit,

�SS� = 	 J2N

2

qSS�

p → 0, for p → � and �qSS�� � 1. �6�

Thus, in the p→� limit the energies ES become independent
Gaussian random variables. The multivariate probability
density is then the product of univariate probability densities
given by

fES
�E� =

1

�NJ2

exp�−
�E − ES

0�2

NJ2 � . �7�

Let us consider a given sample, that is, a particular real-
ization of the random couplings Ji1¯ip

. The entropy of the
sample is given by

S�E� = kB ln ��E� , �8�

where

��E� = �
S

	�E − ES� �9�

is the density of states. The average density of states is

���E�� = �
S

�	�E − ES�� = �
S

fES
�E� . �10�

Due to the statistical independence of ES, the fluctuations
around this average are of order ���E��−1/2, and are thus
completely negligible �12�.

We can rewrite the average density of states in the form

���E�� =
1


�NJ2�
−�

�

dE0 exp�−
�E − E0�2

NJ2 ��
S

	�E0 − ES
0� .

�11�

We recognize

�0�E� = �
S

	�E0 − ES
0� �12�

as the density of states of the system described by the Hamil-
tonian H0. Therefore,

���E�� =
1


�NJ2�
−�

�

dE0 exp�−
�E − E0�2

NJ2 +
S0�E0�

kB
� ,

�13�

where

S0�E0� = kB ln �0�E0� �14�

is the entropy of the system characterized by the Hamiltonian
H0. In the thermodynamic limit, N→�, we have

ln���E�� = max
E0

�−
�E − E0�2

NJ2 +
S0�E0�

kB
� . �15�

E0 is determined by

1

T0�E0�
=

�S0�E0�
�E0

= −
2kB�E − E0�

NJ2 , �16�

where T0�E0� is by definition the temperature of the system
described by the Hamiltonian H0.

For energies E such that ln���E��
0 the average density
of states is very large and the fluctuation is negligible. Thus,
we have with probability 1,

S�E� = kB ln���E�� = −
kB�E − E0�2

NJ2 + S0�E0� . �17�

For energies E such that ln���E���0, the average density of
states is very small. Thus with probability 1 there are no
samples with this energy.

The temperature of the system is given by

1

T�E�
=

�S�E�
�E

= −
2kB�E − E0�

NJ2 , �18�

which coincides with the temperature of the system de-
scribed by the Hamiltonian H0,

T�E� = T0�E0� . �19�

Therefore the energy of the system as a function of tempera-
ture is given by

E�T� = E0�T� −
NJ2

2kBT
, �20�

where E0�T� is the energy of the system characterized by the
Hamiltonian H0. The entropy as a function of the tempera-
ture is

S�T� = S0�T� −
NJ2

4kBT2 . �21�

These results are valid above a critical temperature Tc deter-
mined by

S�Tc� = S0�Tc� −
NJ2

4kBTc
2 = 0. �22�

Below this temperature the system is frozen in its ground
state.

These results are valid for any Hamiltonian H0. We now
particularize for the case where the Hamiltonian H0 de-
scribes the Ising model with infinite range ferromagnetic in-
teractions in a random field �14–16�,

H0 = −
J0

N
�
i�j

SiSj − �
i

HiSi = −
J0

2N	�
i

Si
2
− �

i

HiSi,

�23�

where in the last passage we have dropped the term J0 /2 that
is negligible in the thermodynamic limit. The quadratic term
can be linearized using the identity
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e�a2/2 =
 �

2�
�

−�

�

dxe−�x2/2+�ax, �24�

and the partition function will be given by

Z0 = �
S

e−�H0 =
�J0N

2�
�

−�

�

dm exp�N�−
1

2
�J0m2

+
1

N
�

i

ln 2 cosh ��J0m + Hi��� . �25�

In the thermodynamic limit, N→�, the Laplace method
gives

ln Z0 = N max
m
�−

1

2
�J0m2 + �ln 2 cosh ��J0m + H��� ,

�26�

where we have used the law of large numbers to write

1

N
�

i

ln 2 cosh ��J0m + Hi� = �ln 2 cosh ��J0m + H�� ,

�27�

where �¯� denotes the expectation value with respect to the
random fields H. Thus the free energy is given by

F0 = − �−1 ln Z0 = N�1

2
J0m2 −

1

�
�ln 2 cosh ��J0m + H��� ,

�28�

where the magnetization m is determined by the equation

m = �tanh ��J0m + H�� . �29�

The internal energy E0�T� and the entropy S0�T� follow from
usual thermodynamic relations.

Applying the general results obtained previously for the
system described by the full Hamiltonian �1� in the p→�
limit, we obtain for the internal energy

E

N
= −

�J2

2
−

1

2
J0m2 − �H tanh ��J0m + H�� , �30�

and for the entropy

S

NkB
= −

��J�2

4
− �J0m2 − ��H tanh ��J0m + H��

+ �ln 2 cosh ��J0m + H�� . �31�

These results are valid for ���c where �c is determined by

S��c� = −
��cJ�2

4
− �c��H + J0m�tanh �c�H + J0m��

+ �ln 2 cosh �c�H + J0m�� = 0 �32�

and

m = �tanh �c�J0m + H�� . �33�

For �
�c the system is frozen in its ground state. Therefore

E��� = E��c�, S��� = 0. �34�

III. REPLICA APPROACH

In this section we solve the model in the canonical en-
semble �13�. We use the replica identity for the free energy

− �F = �ln Z� = lim
n→0

�Zn� − 1

n
�35�

to perform the average over the random couplings Ji1i2¯ip
. To

evaluate �Zn� we introduce n replicas of the system 

=1,2 , . . . ,n,

�Zn� = Tr�e−��
=1
n H�S
�� = Tr e−�Heff, �36�

where Heff denotes the effective Hamiltonian that results af-
ter taking the average over random couplings,

− �Heff =
N��J�2

2 � �

��

	 1

N
�

i

Si

Si

�
p

+
n

2�
+

N�J0

2 �


	 1

N
�

i

Si


2

+ ��
i

Hi�



Si

. �37�

We have dropped terms that vanish in the thermodynamic
limit, N→�. The nonlinear terms can be linearized with the
help of the asymptotic relation

eN�f�a� �
N�f��a�
2�

�
−�

�

dxeN��f�x�−f��x��x−a��, �38�

which can be proved for �f��a�
0 and N→� applying the
Laplace method. In particular for f�x�=x2 /2 the asymptotic
relation reduces to the identity �24�. Omitting the factors that
do not contribute to the free energy in the thermodynamic
limit, N→�, we arrive at

�Zn� � � �

��

dq
�� �



dm
e−�Fn�q
�,m
�, �39�

where

Fn

N
= −

1

4
�J2n +

1

2
�J2�p − 1� �


��

q
�
p +

1

2
J0�




m

2

− �−1 1

N
�

i

ln Tr exp�1

2
��J�2p �


��

q
�
p−1S
S�

+ ��



�Hi + J0m
�S
� . �40�

In the N→� limit we use the law of large numbers to write
the last term as an expectation value over the random-field
distribution and use the Laplace method to evaluate the inte-
gral. The free energy is then given by the stationary value of
the functional
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F

N
= −

1

4
�J2 + lim

n→0

1

n�1

2
�J2�p − 1� �


��

q
�
p +

J0

2 �



m

2

− �−1�ln Tr exp�1

2
��J�2p �


��

q
�
p−1S
S�

+ ��



�H + J0m
�S
��� , �41�

where �¯� denotes the expectation value with respect to the
random field H.

To compute the free energy we assume

m
 = m �42�

to be independent of replica indices, and parameterize q
�

following the Parisi’s K-step replica-symmetry-breaking an-
satz �17�. In the n→0 limit the free energy functional be-
comes a function of the magnetization m and the parameters

0 � q0 � q1 � ¯ � qK−1 � qK � 1 �43�

and

0 = m0 � m1 � ¯ � mK � mK+1 = 1, �44�

and is given by

F

N
= −

�J2

4 �1 + �p − 1��
i=0

K

�mi+1 − mi�qi
p − pqK

p−1� +
J0

2
m2

− �
−�

�

dy�G�0
2�y − H − J0m��g0�y� , �45�

where g0�y� is given recursively by

gi−1�y� =
1

�mi
ln��

−�

�

dy�G�i
2�y� − y�exp��migi�y���� ,

�46�

for i=1, . . . ,K with the initial condition

gK�y� =
1

�
ln�2 cosh �y� . �47�

G�2�y� denotes the Gaussian distribution function

G�2�y� =
1

J�
2�
exp	−

y2

2J2�2
 , �48�

where the variances �i
2 are given by

�0
2 =

p

2
q0

p−1, �i
2 =

p

2
�qi

p−1 − qi−1
p−1� for i = 1, . . . ,K .

�49�

We first assume that all the q’s are less than one, 0�q0
� ¯ �qK−1�qK�1. Then �i

2→0 when p→� for i
=0, . . . ,K. Using the expansion

�
−�

�

dy�G�2�y� − y�f�y��

= exp	 J2�2

2

d2

dy2
 f�y� = 1 +
J2�2

2
f��y� + O��4� ,

�50�

we obtain

F

N
= −

�J2

4 �1 + �p − 1��
i=0

K

�mi+1 − mi�qi
p − pqK

p−1�
+

J0

2
m2 −

1

�
�ln 2 cosh ��H + J0m��

− �
i=0

K
��J�i�2

2
�1 − �1 − mi��tanh2 ��H + J0m���

+ O��0
4, . . . ,�K

4 ,�0
2�1

2, . . . ,�0
2�K

2 � . �51�

Stationarity of the free energy with respect to the variational
parameters gives, in the limit p→�,

m = �tanh ��H + J0m�� �52�

and

q0 = q1 = ¯ = qK = �tanh2 ��H + J0m�� . �53�

Thus we arrived at the replica-symmetric solution where all
the q’s are identical. The free energy in the p→� limit is
given by

F

N
= −

�J2

4
+

J0

2
m2 −

1

�
�ln 2 cosh ��H + J0m�� . �54�

The entropy is

S

NkB
= −

��J�2

4
− ���J0m + H�tanh ��J0m + H��

+ �ln 2 cosh ��J0m + H�� . �55�

This solution corresponds precisely to the high-temperature
solution found in the microcanonical approach. Since the en-
tropy becomes negative at low temperatures, it is necessary
to consider a different solution for low temperatures.

We therefore assume that 0�q0� ¯ �qK−1�qK=1.
Then �i

2→0 for i=0, . . . ,K−1 and �K→� in the limit
p→�. A simple calculation yields

gK−1�y� =
1

�mK
ln�2 cosh �mKy� +

1

2
�mK�J�K�2

+ O�e−��J�KmK�2/2�K
−1� . �56�

The error is exponentially small and may be safely ignored.
The rest of calculation proceeds as before using the expan-
sion �50� and we arrive at
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F

N
= −

�J2

4 �1 + �p − 1��
i=0

K

�mi+1 − mi�qi
p − pqK

p−1� +
J0

2
m2

−
1

2
�mK�J�K�2 − �

i=0

K−1
��J�i�2

2
�mK�sech2 �mK�H + J0m��

+ mi�tanh2 �mK�H + J0m���

−
1

�mK
�ln 2 cosh �mK�H + J0m��

+ O��0
4, . . . ,�K−1

4 ,�0
2�1

2, . . . ,�0
2�K−1

2 � . �57�

Stationarity with respect to the variational parameters gives,
in the limit p→�,

m = �tanh �mK�H + J0m�� , �58�

q0 = q1 = ¯ = qK−1 = �tanh2 �mK�H + J0m��, qK = 1,

�59�

consistent with initial assumption qK=1, and

��J�2

4
mK

2 = �ln 2 cosh �mK�H + J0m��

− �mK��H + J0m�tanh �mK�H + J0m�� .

�60�

These results are the same for all K�1, showing that no
other solutions are possible beyond one-step replica-
symmetry breaking. The free energy in the limit p→� is
given by

F

N
= −

�J2

4
mK +

J0

2
m2 −

1

�mK
�ln 2 cosh �mK�H + J0m�� .

�61�

The entropy is

S

NkB
= −

��J�2

4
mK − ���J0m + H�tanh �mK�J0m + H��

+
1

mK
�ln 2 cosh �mK�J0m + H�� . �62�

Taking into account the self-consistency equation �60�, we
find that the entropy vanishes identically. Thus this solution
corresponds to the frozen phase found in the microcanonical
approach.

The self-consistency equations �58� and �60� imply that
�mK is independent of temperature. Since this solution is
acceptable only for mK�1, we have

�mK = �c, �63�

where �c is found from the equations

��cJ�2

4
= �ln 2 cosh �c�H + J0m��

− �c��H + J0m�tanh �c�H + J0m�� �64�

and

m = �tanh �c�H + J0m�� . �65�

Thus we see that �c corresponds precisely to the critical
temperature for the transition to the frozen phase found in
the microcanonical approach. The Parisi order parameter
function q�x� �17� has two flat portions q0=m2 and qK=1,
with a discontinuous jump at x=mK=T /Tc,

q�x� = m2�	 T

Tc
− x
 + �	x −

T

Tc

 . �66�

The overlap distribution function P�q� �18� is given by

P�q� =
T

Tc
	�q − m2� + 	1 −

T

Tc

	�q − 1� . �67�

Thus the frozen phase is indeed a spin-glass phase with
many pure states having minimal overlap between them and
maximal self-overlap �13�.

IV. PHASE DIAGRAMS

The phase diagrams for the model defined by the Hamil-
tonian �1� in the p→� limit were determined for two distri-
butions of random fields which are often considered in the
literature: The discrete bimodal distribution �15�

P�H� =
1

2
	�H − H0 + �� +

1

2
	�H − H0 − �� �68�

and the continuous Gaussian distribution function �14�

P�H� =
1


2��
e−�H − H0�2/2�2

. �69�

In both cases the means and variances are H0 and �2, respec-
tively.

The H0�T phase diagrams in the absence of ferromag-
netic interactions �J0=0� and various values of the standard
deviation � are shown in Fig. 1 and Fig. 2 for bimodal and
Gaussian distributions, respectively. Notice that the case �
=0 reduces to the REM in a uniform field �12�. There are two
phases: replica-symmetric paramagnetic phase �P� and a fro-
zen spin-glass �SG� phase with one-step replica-symmetry
breaking. The transitions are determined by Eq. �32� for J0
=0,

FIG. 1. The J0=0 phase diagram for a bimodal random field for
various values of �.
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−
��cJ�2

4
− �c�H tanh �cH� + �ln 2 cosh �cH� = 0. �70�

These transitions are second order in the thermodynamic
sense, but the Parisi order parameter �66� changes discon-
tinuously at the transition. For both distributions the transi-
tion temperature is depressed for high values of the bias field
H0 and increased for small H0. The effect is most pro-
nounced for the bimodal case where the changeover occurs
for H0 very close to �.

The T�J0 phase diagrams for symmetric random-field
distributions �H0=0� are shown in Figs. 3–5. For comparison
the phase diagrams for the case �=0, corresponding to the
REM with ferromagnetic interactions, are shown by thin
dashed lines. There are four phases: replica-symmetric para-
magnetic �P� and ferromagnetic �F� phases, and frozen spin-
glass �SG� and mixed �M� phases with one-step replica sym-
metry breaking. Unlike the SG phase, in the M phase there is
a nonzero magnetization �m�0�.

The transition from the P to SG phase is determined by
Eq. �32� for m=0, which is identical to Eq. �70�. Since there
is no dependence on J0, it represents a horizontal line in the
T�J0 phase diagram. This transition is second order in the
thermodynamic sense, but the Parisi order parameter �66�
changes discontinuously at the transition.

A second-order transition from the P to F phase can be
determined by expanding the equation of state,

m = �tanh ��H + J0m�� , �71�

in powers of the magnetization m �15�. For symmetric dis-
tribution of the random fields �H0=0� we find

m = am − bm3 − cm5 − ¯ , �72�

where

a = �J0�1 − �tanh2 �H�� , �73�

b =
1

3
��J0�3�1 − 4�tanh2 �H� + 3�tanh4 �H�� , �74�

c = −
1

15
��J0�5�2 − 17�tanh2 �H� + 30�tanh4 �H�

− 15�tanh6 �H�� . �75�

There is a second-order transition from the P to F phase for
a=1 and b
0. For b=0 there is a tricritical point, and for
b�0 the transition is first order and can only be determined
numerically by equating the free energies of both phases.

FIG. 2. The J0=0 phase diagram for a Gaussian random field for
various values of �.

FIG. 3. The phase diagram for a symmetric bimodal random
field. The results for � /J=0.4 are shown by the solid curves. For
comparison the results in the absence of random fields are shown by
the dashed curves.

FIG. 4. The phase diagram for a symmetric bimodal random
field. The results for � /J=0.8 are shown by the solid curves
�second-order transition� and thick dashed curves �first-order tran-
sition�. For comparison the results in the absence of random fields
are shown by the thin dashed curves.

FIG. 5. The phase diagram for a symmetric Gaussian random
field. The results for � /J=1 are shown by the solid curves. For
comparison the results in the absence of random fields are shown by
the dashed curves.

DE OLIVEIRA FILHO, DA COSTA, AND YOKOI PHYSICAL REVIEW E 74, 031117 �2006�

031117-6



For the bimodal distribution of random fields, the condi-
tions a=b=0 give

�� = tanh−1	 1

3


 =
1

2
ln�2 + 
3� , �76�

which determines the location of the tricritical point. This
tricritical point occurs above the freezing transition �70� only
if the standard deviation � is greater than the threshold value
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Thus the phase diagrams for the bimodal distribution are
qualitatively different depending on the value of standard
deviation �.

For ���c the phase diagrams do not differ qualitatively
from the case without random fields, as shown in Fig. 3. All
the transition lines are second order in the thermodynamic
sense. However, across the F-M and SG-M transitions the
Parisi order parameter �66� changes discontinuously.

For �
�c the phase diagrams change qualitatively com-
pared to the case without random fields. The second-order
P-F transition line ends at a tricritical point below which the
transition is of first order, shown by thick dashed line in Fig.
4. This line was determined by equating the free energies of
the two neighboring phases. The transition is of first order in
the thermodynamic sense as well as in the discontinuity of
the Parisi order parameter �66� across the transition.

For the Gaussian distribution one always has b
0 when
a=1. Thus the P-F transition is always of second order and
the phase diagrams and the nature of the transitions do not
differ qualitatively from the case of bimodal distribution for
���c, as shown in Fig. 5.

V. DISCUSSION

We solved exactly the REM in a random field in both
microcanonical and replica approaches. We investigated in
detail the phase diagrams for bimodal and Gaussian random-
field distributions with mean H0 and variance �2. The Gauss-
ian random fields do not change the phase diagrams qualita-
tively. The bimodal random fields, on the contrary, change
the H0=0 phase diagram qualitatively for sufficiently large �
by leading to a tricritical point and a first-order transition at
low temperatures. The same conclusions were reached in the
replica-symmetric study of the SK model in a Gaussian ran-
dom field �8� and bimodal random fields �9�.

In the mean-field approximation, a ferromagnetic Ising
model in a random field with minimum at zero field leads to
a tricritical point and a first-order transition �15,16�. Our re-
sults indicate that that this property remains true even in the
presence of random interactions, although at low tempera-
tures the emergence of the tricritical point may be forestalled
by the spin-glass phase. However, at present there is no con-
clusive evidence of this property in the three-dimensional
short-ranged Ising model in random fields. In fact, Monte
Carlo simulations detect a jump in the magnetization but no
latent heat for both bimodal �19� and Gaussian �20� distribu-
tions, and high-temperature series expansions �21� find a
continuous transition for both distributions.

Our results can shed useful light on the nature of phase
diagram of more sophisticated spin-glass models with ran-
dom fields �8–10�. One interesting feature of the phase dia-
gram with a tricritical point is the possibility of a first-order
transition from a paramagnetic to mixed a phase.
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